
Page 1 of 34

File locking in IBM MQ 9.3 multi-instance queue managers

https://www.ibm.com/support/pages/node/608527

Date last updated: 28-Jan-2024

Angel Rivera

IBM MQ Support
https://www.ibm.com/products/mq/support

Find all the support you need for IBM MQ

+++ Objective +++

The objective of this document is to analyze the file locking activity in an IBM MQ 9.3
multi-instance queue manager in Linux for the following files of the queue manager, which
help to coordinate when the Standby instance can become Active:
 active
 master
 standby

There are only two scenarios that are analyzed by means of the traces:
- The startup trace is captured for both the Active and the Standby instance, and
- The manual graceful switchover from the Active to the Standby (endmqm -is QmgrName)

This document does not cover the trace of "failure" scenarios, such as network problems,
disk problems, hardware outages, etc.

The queue manager in question is the only one active in both hosts for this scenario, in that
way, there is no "contamination" in the traces from other queue managers.
The file system is NFS Version 4.

++ Acknowledgements

Thanks to Umamahesh Ponnuswamy for his assistance.

++ Related articles

https://www.ibm.com/support/pages/node/7112337
Using lslocks or lsof to list locked files when using IBM MQ multi-instance queue managers in
Linux

https://www.ibm.com/support/pages/node/6348636
MQ Distributed: collection of articles regarding multi-instance queue managers

https://www.ibm.com/support/pages/node/608527
https://www.ibm.com/products/mq/support
https://www.ibm.com/support/pages/node/7112337
https://www.ibm.com/support/pages/node/6348636

Page 2 of 34

+ Zip file with trace files and miscellaneous

There is a companion zip file for this techdoc:
File-locking-multi-instance-93.zip

It contains the following files:
AMQ30939.0.EC.amqzxma0.host1.FMT
AMQ31110.0.dspmq.1.host1.FMT
AMQ31123.0.dspmq.2.host1.FMT
AMQ118435.0.EC.amqzxma0.host2.FMT
AMQ118462.0.dspmq.1.host2.FMT
AMQ118608.0.dspmq.2.host2.FMT
AMQERR01.locking.LOG
qmstatus.ini

Page 3 of 34

++ Overview of the file locking mechanism to coordinate multiple instances

+ Configuration:

The hosts for this tutorial are:

Host1 (riggioni1):
The Active instance is started first.

Host2 (suvereto1):
Then the Standby instance is started. It will become the active one after the switchover.

Host3 (bilbao1):
It is not involved in this scenario, but it is mentioned here for completeness. It has the
physical file system for the queue manager data and recovery logs.

The hosts are described in this other tutorial:

https://www.ibm.com/support/pages/node/6985543
Configuring and using an IBM MQ 9.3 Multi-Instance in Linux

The following is an overview of the configuration:

Notice that host1 and host2 will have their own local /var/mqm directory structure which
will be used for local queue managers, for the master index of the queue managers
(mqs.ini), for the FDC files and for the trace files (*.TRC).

The mounted file system /mqha will contain the recovery/transaction logs for the queue
managers, as well as the data for the queue managers, including the qm.ini configuration
file and the error logs of the queue manager.

https://www.ibm.com/support/pages/node/6985543

Page 4 of 34

For this tutorial 3 Red Hat Enterprise Linux (RHEL) x86-64bit servers will be used.
The version is 8.6

The coordination mechanism of Active / Standby behavior is done via file locks on 3 shared
files ("active", "master" and "standby") in the queue manager data directory:

mqm@riggioni1.fyre.ibm.com: /mqha/qmgrs/QMMI1

$ ls -l active master standby

-rw-rw-r-- 1 mqm mqm 4096 Aug 14 05:06 active

-rw-rw-r-- 1 mqm mqm 4096 Aug 14 05:06 master

-rw-rw-r-- 1 mqm mqm 4096 Aug 14 05:17 standby

The MQ strmqm command does not have a flag to indicate explicitly if a given instance is
going to be labeled the "active" one.

Instead, there is a racing situation in which the "strmqm -x QMgr" which finishes first is the
one that is going to be "active", and the other instance is going to be "standby".
Thus, if you want the active instance to be in host1, then you must issue "strmqm -x QMgr"
in host1 and wait until it is fully started before you start the other instance in host2.

In this scenario, the first instance of a Multi-Instance queue manager is started via
 strmqm -x QMGR1
such as in host1, then this instance is going to be the "active" one.
The other instance, the standby, is started in the same manner in host2.

The active instance of the queue manager requests the operating system to get a lock on
the file named "master".
The operating system, on behalf of the queue manager, contacts the underlying file system
to actually get a lock on the file.

+ Notice that MQ is “file system agnostic”:

- The queue manager does NOT have any knowledge on the nature of the actual file system
being used: the queue manager contacts the operating system, the operating system does
its magic and then returns information to the queue manager.

- The queue manager does NOT interact with the file system to get a file lock: instead, the
queue manager contacts the operating system, and it is the responsibility of the operating
system to interact with the file system. Then the file system returns the file lock (or the
return code or error) to the operating system, and the operating system in turn
communicates the result to the queue manager.

Page 5 of 34

Note: This tutorial uses UNIX-style directory names, but the idea applies to Windows too.
For example, if in the /var/mqm/mqs.ini file the DataPath for the queue manager is:
 /mqha/qmgrs/QMMI1
Then the fully qualified name for this "master" file is:
 /mqha/qmgrs/QMMI1/master

The assumption is that /shared/qmdata is under NFS V4 control (UNIX) or a supported file
system for Windows.
Again, the MQ queue manager does NOT know (and it does not care) that NFS or another
supported file system is being used as a file system.

There are 3 files for the queue manager that are used for multi-instance:
 /mqha/qmgrs/QMMI1/master
 /mqha/qmgrs/QMMI1/active
 /mqha/qmgrs/QMMI1/standby

These 3 files contain text data in a single line (without a carriage return/line feed). The
line has several tokens, the main ones are:
 item 1: hostname of the process that has the lock
 item 2: a lock id

The active instance also gets a lock on the file named "active", which provides another way
to identify which is the active instance.

At this time, the active instance is running in host1 and the following files are locked:
 /mqha/qmgrs/QMMI1/master => locked by the active instance in host1
 /mqha/qmgrs/QMMI1/active => locked by the active instance in host1
 /mqha/qmgrs/QMMI1/standby => not locked

When the "standby" instance in host2 is started (strmqm -x QMGR1), then this queue
manager will check if the lock for the "master" file has been taken already. In this scenario,
it is "yes".

Because the standby instance cannot get a lock on the ‘master’ file, then the instance will
get the lock for the corresponding file "standby", located in the same directory. The standby
instance is not a functional queue manager.

At this time, the active instance is running in host1 and the standby instance is running in
host2 and the following files are locked:
 /mqha/qmgrs/QMMI1/master => locked by the active instance in host1
 /mqha/qmgrs/QMMI1/active => locked by the active instance in host1
 /mqha/qmgrs/QMMI1/standby => locked by the standby instance in host2

The standby instance will try to acquire the lock for the file "master" every 2 seconds, and
the file system will indicate to the standby instance that the file is locked by someone else.

Page 6 of 34

If the lock for the file "master" is released, then when the standby instance asks again for
the lock of the file "master", the file system will give the lock to the standby instance.
Then, the standby instance will take the role of being the "active" instance and proceed to
be a fully functional queue manager, capable to interact with clients.

It is important to notice that the active instance, having the lock for the file "master" is still
going to ask periodically (every 10 seconds) if it still has the lock on the file "master".
See item "c" below for more details on why this action is needed.

Based on the above, the most likely scenarios for an active instance to failover to a standby
instance are discussed below.

The specific example of using NFS is illustrated, but the principle applies to other
supported file systems.
(Again, the actual MQ code does NOT know which is the type of file system being used!!!)

a) The active instance is softly terminated by issuing "endmqm -is", indicating a
"switchover", and the active instance will purposely release the lock for the file "master"
(and the "active" file) and the standby will acquire the lock for both files to become the
active instance and relinquish the lock for the file "standby" (allowing for another standby
instance)
Note: the -i flag is for immediate and although strictly speaking is not necessary for multi-
instance, it is a good idea to use it, because it will allow the instance to terminate even if
there are connected clients (which is most likely to be the case).

b) The active instance is harshly terminated ("ps -9" or a crash of host1) and the instance
does NOT have the time to release the file lock.
This is where NFS V3 will fail to do its job because NFS V3 will NOT release the lock
acquired by the active instance (thus, NFS V3 is NOT supported due to its severe technical
limitations).
Because NFS V4 works with "leased locks", the NFS server will determine that the process
that acquired the lock for the file "master" has died and did not release the locks, and thus,
the NFS server will break the lease of the lock with respect to the active instance.
Then, the standby instance interrogates the file system again if the lock is available for the
file "master", the file system will reply that yes, it is available and the standby instance will
grab the lock and become the active instance.

c) The network connection between the host1 (active instance) and the NFS server fails. In
this case, the active instance when it checks again with the operating system to see if it
has the lock on the file "master", the operating system (interacting with the NFS client -
NFS server) will indicate to the active instance that it cannot get the status (no network
connection). Thus, the active instance jumps to the conclusion that there is a problem and
terminates.

Page 7 of 34

Assuming that the network connection is still healthy between the host2 (standby instance)
and the NFS server, then the NFS server will determine that the active instance cannot use
the file "master" and thus will release the leased lock for the file "master". This will allow
the standby instance to grab the lock on this file.

The successful operation of the MQ multi-instance feature critically depends on the correct
functioning of NFS file locks. It also requires that operations (such as open and read) on an
NFS file-locked file does not take longer than tens of seconds. If the queue manager does
incur delays of tens of seconds then the queue manager has to conclude that the system is
not operating correctly and the queue manager will shutdown to allow the standby instance
to take over.

d) The queue manager has a couple of process threads that monitor the responsiveness of
the operating system while performing the tasks asked by the queue manager (getting a file
lock, inquiring the status of a lock, etc). If these threads determine that the response is not
suitable, then the code will generate an FDC with more details, such as Probeid ZX155001
component zxcFileLockMonitorThread error lrcE_S_Q_MGR_UNRESPONSIVE.

For example, the FDC files reveal that due to an infrastructure problem (outside the scope
of MQ), the active instance of the MQ queue manager could not get response from the
underlying resources (most likely due to the file system), and thus, the active instance
terminated, allowing the standby instance to become Active. The MQ code has worked as
designed: to do a failover in case that there are problems with the file system, operating
system or network system.

The following technote has more explanation about the unresponsiveness behavior from the
underlying file system and/or disk, and why the MQ queue manager cannot do anything
about it.

https://www.ibm.com/support/pages/node/473409
AMQ7280 queue manager appears unresponsive, Probeid ZX155001 component
zxcFileLockMonitorThread error lrcE_S_Q_MGR_UNRESPONSIVE

https://www.ibm.com/support/pages/node/473409

Page 8 of 34

+ Overall scenario:

Step 1: host1 - Start the Active: strmqm -x QMMI1
 trace file: AMQ30939.0.EC.amqzxma0.host1.FMT

Step 2: host1 - dspmq -x -m QMMI1 (shows only Active in host1)
 trace file: AMQ31110.0.dspmq.1.host1.FMT => it is the first dspmq from host1

Step 3: host2 - Start the Standby: strmqm -x QMMI1
 trace file: AMQ118435.0.EC.amqzxma0.host2.FMT

Step 4: host2 - dspmq -x -m QMMI1 (shows both Active in host1 and Standby in host2)
 trace file: AMQ118462.0.dspmq.1.host2.FMT => it is the first dspmq from host2

Step 5: host1 - End the Active (Standby becomes new Active): endmqm -is QMMI1
 trace file: AMQ30939.0.EC.amqzxma0.host1.FMT
 trace file: AMQ118435.0.EC.amqzxma0.host2.FMT

Step 6: host1 - dspmq -x -m QMMI1 (shows only new Active now in host2)
 trace file: AMQ31123.0.dspmq.2.host1.FMT => it is the second dspmq from host1

Step 7: host2 - dspmq -x -m QMMI1 (shows only new Active now in host2)
 trace file: AMQ118608.0.dspmq.2.host2.FMT => it is the second dspmq from host2

+ Preliminary steps

- Login as an MQ administrator in each host (host1 and host2)

- Delete previous traces in both hosts.
Keep in mind that the trace files will NOT be located in the shared file system; instead they
will be in the /var/mqm/trace directory local to each host.
 host1: rm /var/mqm/trace/*
 host2: rm /var/mqm/trace/*

-- Note: We need to obtain the "early trace" in order to capture the startup of the queue
managers.

-- Stop the queue managers. Assuming that Active is in host1 and Standby in host2
 host1 (Active): endmqm -i QMMI1
 host2 (Standby): endmqm -x QMMI1

-- Start the “early” trace
 host1: strmqtrc -e -t all -t detail
 host2: strmqtrc -e -t all -t detail

Page 9 of 34

+ Scenario

Step 1: Start the Active queue manager
 host1: strmqm -x QMMI1
mqm@host1: /var/mqm/trace
$ strmqm -x QMMI1
IBM MQ queue manager 'QMMI1' starting.
The queue manager is associated with installation 'Installation1'.
6 log records accessed on queue manager 'QMMI1' during the log replay phase.
Log replay for queue manager 'QMMI1' complete.
Transaction manager state recovered for queue manager 'QMMI1'.
Plain text communication is enabled.
IBM MQ queue manager 'QMMI1' started using V9.3.2.0.

Step 2: Display status of Active, before Standby is started
 host1: dspmq -xf -m QMMI1
QMNAME(QMMI1) STATUS(Running)
 INSTANCE(riggioni1.fyre.ibm.com) MODE(Active)
 master(riggioni1.fyre.ibm.com,7225327309153730329)
 active(riggioni1.fyre.ibm.com,7225327309153730329)

Step 3: Start Standby
 host2: strmqm -x QMMI1
IBM MQ queue manager 'QMMI1' starting.
The queue manager is associated with installation 'Installation2'.
Plain text communication is enabled.
A standby instance of queue manager 'QMMI1' has been started. The active
instance is running elsewhere.

Step 4: Display the status of the queue managers before switchover
.
host2: dspmq -xf -m QMMI1

QMNAME(QMMI1) STATUS(Running as standby)
 INSTANCE(riggioni1.fyre.ibm.com) MODE(Active)
 INSTANCE(suvereto1.fyre.ibm.com) MODE(Standby)
 master(riggioni1.fyre.ibm.com,7225327309153730329)
 active(riggioni1.fyre.ibm.com,7225327309153730329)
 standby(suvereto1.fyre.ibm.com,7225327562557880603)

Step 5: Do a controlled switchover:
 host1: endmqm -is QMMI1
IBM MQ queue manager 'QMMI1' ending.
IBM MQ queue manager 'QMMI1' ended, permitting switchover to a standby
instance.
Now the Standby instance in host2 should become the Active instance.

Page 10 of 34

Step 6: From host1, display the status of the queue managers after the switchover has
completed

 host1: dspmq -xf -m QMMI1
QMNAME(QMMI1) STATUS(Running elsewhere)
 INSTANCE(suvereto1.fyre.ibm.com) MODE(Active)
 master(suvereto1.fyre.ibm.com,7225327562557880603)
 active(suvereto1.fyre.ibm.com,7225327562557880603)

Step 7: From host2, display the status of the queue managers after the switchover has
completed

 host2: dspmq -xf -m QMMI1
QMNAME(QMMI1) STATUS(Running)
 INSTANCE(suvereto1.fyre.ibm.com) MODE(Active)
 master(suvereto1.fyre.ibm.com,7225327562557880603)
 active(suvereto1.fyre.ibm.com,7225327562557880603)

+ Post-scenario steps

- End the traces

 host1: endmqtrc -a
IBM MQ trace for installation 'Installation1' has stopped.

 host2: endmqtrc -a
IBM MQ trace for installation 'Installation2' has stopped.

- Format the trace (resulting in human readable files that have a suffix of FMT)
 This step is applicable only for Unix. The files in Windows are formatted already.

 host1:
 cd /var/mqm/trace/
 dspmqtrc *.TRC

 host2:
 cd /var/mqm/trace/
 dspmqtrc *.TRC

Page 11 of 34

- Prepare tar files, compress them and send them via ftp. The following command will
gather also the FDC file and the error logs.

The zip file will be generated in the current directory (flag: outputdir).

From host1:
 cd /home/mqm
 runmqras -qmlist QMMI1 -section trace -outputdir .

From host2:
 cd /home/mqm
 runmqras -qmlist QMMI1 -section trace -outputdir .

Note:
The output of runmqras includes the file with the output of "mount.stdout".
We can see that they entry for /mqha is type nfs4
mount.stdout
9.46.80.xx:/ on /mqha type nfs4
(rw,relatime,vers=4.2,rsize=262144,wsize=262144,namlen=255,hard,proto=tcp,timeo=600,r
etrans=2,sec=sys,clientaddr=9.46.66.142,local_lock=none,addr=9.46.80.75)

Page 12 of 34

++ Reviewing traces

+ Step 1: Starting Active instance

Status at start of this step:
host1: No instance running
host2: No instance running
master file locked by: none
active file locked by: none
standby file locked by: none

It is necessary to identify the trace file for the Execution Controller (amqzxma0).
Why? because it is the one that handles the file locking for the files: master, active,
standby
Note: The trace files for dspmq will also be needed later on, because it queries the status
of the locks.

The trace files have a header with identifying information and one of the lines is "Program
Name", such as:
| Program Name :- amqzxma0

Thus, let's find out the trace files for amqzxma0 and dspmq:

$ cd /var/mqm/trace
$ grep "Program Name" *.FMT | grep amqzxma0
AMQ30939.0.FMT:| Program Name :- amqzxma0

Note: Because it is difficult to remember PIDs, thus, the file is going to be manually
renamed to make it easier to identify it:
AMQ30939.0.EC.amqzxma0.host1.FMT => it is the Execution Controller for host1 (Step 1)

$ grep "Program Name" *.FMT | grep dspmq
AMQ31110.0.FMT:| Program Name :- dspmq
AMQ31123.0.FMT:| Program Name :- dspmq

Note: Similarly the files were renamed:
AMQ31110.0.dspmq.1.host1.FMT => it is the first dspmq from host1 (Step 2)
AMQ31123.0.dspmq.2.host1.FMT => it is the second dspmq from host1 (Step 6)

Page 13 of 34

+ Note about the values for LockMode found in the trace:

The source code header file amqxnfla.h has the following regarding LockMode:
 #define xcsFILE_LOCK_NO_LOCK 0x0000
 #define xcsFILE_LOCK_EXCLUSIVE 0x0001
 #define xcsFILE_LOCK_SHARED 0x0002

+ host1: Reviewing file: file AMQ30939.0.EC.amqzxma0.host1.FMT

It is faster to reach to the section that checks for the file locks, by searching for the
function:
 zutRequestQMFileLocks

This is the start of the block that handles the file locks
 12:20:08.155561 30939.1 : --{ zutRequestQMFileLocks
 12:20:08.155565 30939.1 : DataPath(/mqha/qmgrs/QMMI1) Flags(0X41)
 12:20:08.155567 30939.1 : ---{ xcsIsEnvironment
 12:20:08.155571 30939.1 : xcsIsEnvironment[AMQ_FILE_LOCKS_OFF] =
FALSE
 12:20:08.155573 30939.1 : ---} xcsIsEnvironment rc=OK FunctionTime=6

 The queue manager tries to get a file lock xcsFILE_LOCK_EXCLUSIVE on the file "master".
 12:20:08.155608 30939.1 : ---{ xcsOpenFileLock
 12:20:08.155611 30939.1 : FileName(/mqha/qmgrs/QMMI1/master)
LockMode(0X1)
 12:20:08.164879 30939.1 : ----{ xcsWaitFileLock
 12:20:08.164895 30939.1 : fd(13) LockType(0X1) timeout(0)
 12:20:08.165216 30939.1 : ----} xcsWaitFileLock rc=OK FunctionTime=337

If the lock is acquired, then write into that file.
 12:20:08.165230 30939.1 : Lock details to write into master:
riggioni1.fyre.ibm.com,7225327309153730329,1682277608,501,501
 12:20:08.165235 30939.1 : ---{ xcsWriteFileLock
 12:20:08.165237 30939.1 :
LockData(riggioni1.fyre.ibm.com,7225327309153730329,1682277608,501,501)
 12:20:08.178946 30939.1 : ---} xcsWriteFileLock rc=OK FunctionTime=13711

The queue manager tries to get a file lock xcsFILE_LOCK_EXCLUSIVE on the file "active".
 12:20:08.178973 30939.1 : ---{ xcsOpenFileLock
 12:20:08.178978 30939.1 : FileName(/mqha/qmgrs/QMMI1/active)
LockMode(0X1)
 12:20:08.180541 30939.1 : ----{ xcsWaitFileLock
 12:20:08.180551 30939.1 : fd(14) LockType(0X1) timeout(0)
 12:20:08.180947 30939.1 : ----} xcsWaitFileLock rc=OK FunctionTime=406
 12:20:08.180953 30939.1 : fd(14)
 12:20:08.180955 30939.1 : ---} xcsOpenFileLock rc=OK FunctionTime=1982

Page 14 of 34

If the lock is acquired, then write into that file.
 12:20:08.180958 30939.1 : Lock details to write into active:
riggioni1.fyre.ibm.com,7225327309153730329,1682277608,501,501
 12:20:08.180960 30939.1 : ---{ xcsWriteFileLock
 12:20:08.180962 30939.1 :
LockData(riggioni1.fyre.ibm.com,7225327309153730329,1682277608,501,501)
 12:20:08.192574 30939.1 : ---} xcsWriteFileLock rc=OK FunctionTime=11614

Closing the file lock for the active:
 12:20:08.192596 30939.1 : ---{ xcsCloseFileLock
 12:20:08.193189 30939.1 : Data: 0x0000000e 0x00000000
 12:20:08.193706 30939.1 : ---} xcsCloseFileLock rc=OK FunctionTime=1110

The queue manager tries to get a file lock on the file "active". This time the lock mode is
different: xcsFILE_LOCK_SHARED
 12:20:08.193715 30939.1 : ---{ xcsOpenFileLock
 12:20:08.193720 30939.1 : FileName(/mqha/qmgrs/QMMI1/active)
LockMode(0X2)
 12:20:08.194437 30939.1 : ----{ xcsWaitFileLock
 12:20:08.194443 30939.1 : fd(14) LockType(0X2) timeout(0)
 12:20:08.194779 30939.1 : ----} xcsWaitFileLock rc=OK FunctionTime=342
 12:20:08.194789 30939.1 : fd(14)
 12:20:08.194791 30939.1 : ---} xcsOpenFileLock rc=OK FunctionTime=1076
 12:20:08.194795 30939.1 : ---{ xcsReadFileLock
 12:20:08.195235 30939.1 : ---} xcsReadFileLock rc=OK FunctionTime=440
 12:20:08.195244 30939.1 : Lock details read from active:
riggioni1.fyre.ibm.com,7225327309153730329,1682277608,501,501
 12:20:08.195263 30939.1 : --} zutRequestQMFileLocks rc=OK
FunctionTime=39702

Checks for the lock status for "standby" to ensure that it is available (it does not get a lock
and it does not try to write into that file).
 12:20:08.195268 30939.1 : --{ zutRequestQMFileLocks
 12:20:08.195272 30939.1 : DataPath(/mqha/qmgrs/QMMI1) Flags(0X1200)
 12:20:08.195276 30939.1 : ---{ xcsOpenFileLock
 12:20:08.195278 30939.1 : FileName(/mqha/qmgrs/QMMI1/standby)
LockMode(0)
 12:20:08.195846 30939.1 : fd(15)
 12:20:08.195854 30939.1 : ---} xcsOpenFileLock rc=OK FunctionTime=578
 12:20:08.195857 30939.1 : ---{ xcsCloseFileLock
 12:20:08.195865 30939.1 : Data: 0x0000000f 0x00000000
 12:20:08.196098 30939.1 : ---} xcsCloseFileLock rc=OK FunctionTime=241
 12:20:08.196102 30939.1 : --} zutRequestQMFileLocks rc=OK
FunctionTime=834

Page 15 of 34

At this point, the status (LockMode) for each file is:
 FileName(/mqha/qmgrs/QMMI1/master) LockMode(0X1) => exclusive (by host1 riggioni1)
 FileName(/mqha/qmgrs/QMMI1/active) LockMode(0X2) => shared (by host1 riggioni1)
 FileName(/mqha/qmgrs/QMMI1/standby) LockMode(0) => not locked

Even though it is not related to file locking, because the Active was started with
"strmqm -x", then the qmstatus.ini is updated to include:
 PermitStandby=Yes

 12:20:08.239122 30939.1 : -----{ xusWriteSingleStanza
 12:20:08.239125 30939.1 : QueueManagerStatus:
 12:20:08.239128 30939.1 : CurrentStatus=Starting
 12:20:08.239130 30939.1 : PermitStandby=Yes
 12:20:08.239133 30939.1 : PermitFailover=Yes
 12:20:08.239135 30939.1 : PlatformSignature=20497
 12:20:08.239137 30939.1 : PlatformString=Linux 4.18.0-
425.19.2.el8_7.x86_64
 12:20:08.239140 30939.1 : UpdateTime=2023-04-23 12:20:08.238955
 12:20:08.239142 30939.1 : Version=9.3.2.0
 12:20:08.239144 30939.1 : MinimumRequiredVersion=9.3.2.0
 12:20:08.239147 30939.1 : RetCode (OK)
 12:20:08.239148 30939.1 : -----} xusWriteSingleStanza rc=OK FunctionTime=26

Page 16 of 34

+ After the Active instance has started notice the following in the "master" and "active"
files.

This is the contents of the master and active files:

host1
$ cat /mqha/qmgrs/QMMI1/master
cat /mqha/qmgrs/QMMI1/master
riggioni1.fyre.ibm.com,7225330354288567839,1682278317,501,501

$ cat /mqha/qmgrs/QMMI1/active
riggioni1.fyre.ibm.com,7225330354288567839,1682278317,501,501

The standby file will be discussed later on.

The contents of each file is 1 line.
This is a reference to the tokens that compose the line:

The master, active and standby files contain a little data about the lock holder:
 - Hostname
 - Lock id – identifies the queue manager instance
 When an instance starts, it calculates the lock id which it writes into the lock files
 that it owns
 - Lock time
 - User id of MQ administrator "mqm" in Unix
 - Group id of MQ administrator "mqm" in Unix

- Notice a change to qmstatus.ini

Because the flag "-x" was used with strmqm, the qmstatus.ini is updated to indicate that a
Standby instance is allowed:
QueueManagerStatus:
 PermitStandby=Yes

mqm@host1:
$ head /mqha/qmgrs/QMMI1/qmstatus.ini
AuthorityData:
 Creator=mqm
QueueManagerStatus:
 CurrentStatus=Running
 PermitStandby=Yes
 PermitFailover=Yes
 PlatformSignature=20497
 PlatformString=Linux 4.18.0-425.19.2.el8_7.x86_64
 Version=9.3.2.0
 MinimumRequiredVersion=9.3.2.0

Page 17 of 34

+ Message in error log of the queue manager indicating that the Active queue manager has
started:

Notice that the Host(riggioni1) is mentioned in the header.
There is no explicit indication that it is the "Active", but implicitly, it is the Active one.

directory: /mqha/qmgrs/QMMI1/errors
File: AMQERR01.LOG

04/23/2023 12:20:09 PM - Process(30939.1) User(mqm) Program(amqzxma0)
 Host(riggioni1.fyre.ibm.com) Installation(Installation1)
 VRMF(9.3.2.0) QMgr(QMMI1)
 Time(2023-04-23T19:20:09.933Z)
 CommentInsert1(9.3.2.0)
 CommentInsert3(QMMI1)
AMQ8003I: IBM MQ queue manager 'QMMI1' started using V9.3.2.0.
EXPLANATION:
IBM MQ queue manager 'QMMI1' started using V9.3.2.0.

Page 18 of 34

+ Step 2: host1 - dspmq (shows only Active)

+ Question: How do we know that this host is the Active?

Issue the following dspmq command.

mqm@host1: /var/mqm/trace
$ dspmq -xf -m QMMI1
QMNAME(QMMI1) STATUS(Running)
 INSTANCE(riggioni1.fyre.ibm.com) MODE(Active)
 master(riggioni1.fyre.ibm.com,7225327309153730329)
 active(riggioni1.fyre.ibm.com,7225327309153730329)

Notice: MODE(Active)

Let's review the trace, searching for:
 zutQueryQMFileLocks
File: AMQ31110.0.dspmq.1.host1.FMT

 12:20:34.758919 31110.1 : -{ zutQueryQMFileLocks
 12:20:34.758922 31110.1 : DataPath(/mqha/qmgrs/QMMI1) Flags(0X1)
 12:20:34.758925 31110.1 : --{ xcsIsEnvironment
 12:20:34.758927 31110.1 : xcsIsEnvironment[AMQ_FILE_LOCKS_OFF] =
FALSE
 12:20:34.758929 31110.1 : --} xcsIsEnvironment rc=OK FunctionTime=4

The file "master" is locked:
 12:20:34.758933 31110.1 : --{ xcsQueryFileLock
 12:20:34.758936 31110.1 : FileName(/mqha/qmgrs/QMMI1/master)
 12:20:34.760231 31110.1 : Lock data read ()
 12:20:34.760246 31110.1 : Data: 0x00000008 0x00000000
 12:20:34.760260 31110.1 : --} xcsQueryFileLock rc=OK FunctionTime=1327
 12:20:34.760273 31110.1 : Lock data for /mqha/qmgrs/QMMI1/master
is <riggioni1.fyre.ibm.com> <LOCKED>
 12:20:34.760275 31110.1 : -} zutQueryQMFileLocks rc=OK FunctionTime=1356

The file "active" is locked:
12:20:34.760278 31110.1 : -{ zutQueryQMFileLocks
 12:20:34.760280 31110.1 : DataPath(/mqha/qmgrs/QMMI1) Flags(0X2)
 12:20:34.760283 31110.1 : --{ xcsQueryFileLock
 12:20:34.760285 31110.1 : FileName(/mqha/qmgrs/QMMI1/active)
 12:20:34.761199 31110.1 : Lock data read ()
 12:20:34.761211 31110.1 : Data: 0x00000008 0x00000000
 12:20:34.761712 31110.1 : --} xcsQueryFileLock rc=OK FunctionTime=1429
 12:20:34.761725 31110.1 : Lock data for /mqha/qmgrs/QMMI1/active is
<riggioni1.fyre.ibm.com> <LOCKED>

Page 19 of 34

 12:20:34.761727 31110.1 : -} zutQueryQMFileLocks rc=OK FunctionTime=1449

The file "standby" is NOT locked:
 12:20:34.761730 31110.1 : -{ zutQueryQMFileLocks
 12:20:34.761732 31110.1 : DataPath(/mqha/qmgrs/QMMI1) Flags(0X3)
 12:20:34.761735 31110.1 : --{ xcsQueryFileLock
 12:20:34.761738 31110.1 : FileName(/mqha/qmgrs/QMMI1/standby)
 12:20:34.762833 31110.1 : Lock data read ()
 12:20:34.762845 31110.1 : Data: 0x00000008 0x00000000
 12:20:34.763126 31110.1 : --} xcsQueryFileLock rc=OK FunctionTime=1391
 12:20:34.763136 31110.1 : Lock data for /mqha/qmgrs/QMMI1/standby
is <riggioni1.fyre.ibm.com> <NOT LOCKED>
 12:20:34.763138 31110.1 : -} zutQueryQMFileLocks rc=OK FunctionTime=1408

+ Question: Is there a way to find out if the "active" file is locked without taking the MQ
trace?

The full path of the file is:
/mqha/qmgrs/QMMI1/active

The Unix tool "lsof" can be used to show the file locks.

lsof is a tool that shows only the LOCAL processes that have locked a file.
In other words, if you login to the host that has the NFS server, lsof will NOT show those
files that have been locked in remote hosts where the NFS file system has been mounted.
You will need to visit each host to find out the locked files.

Login as root in order to execute the operating system "lsof" to find out which applications
have a lock on the files
(if you can execute successfully "lsof" as user "mqm" or an MQ administrator, then it is OK to
proceed with that userid).

In this scenario, the Active instance is running in host1

The meaning of the 4th column (FD) is the one that is of interest for us regarding file
locking:
If the first letter is the lower case "r" means: r for read access;
If the first letter is the lower case "u" means: u for read and write access;
If the last character is the upper case "W" means: W for a write lock on the entire file;
If the last character is the upper case"R" means: R for a read lock on the entire file;
If the last character is a space, then there is no lock.

Page 20 of 34

Thus:
uW means - read and write access, write lock on entire file
rW means - read access, write lock on entire file
rR means - read access, read lock on entire file
r means - read access, no lock

In host1 where the Active instance is running, issue the following to list the locks for the
'master' file.
Under the column FD notice the value of uW:
 uW => which means that the file is opened with read and write access, and with
write lock on entire file

ROOT@host1-riggioni1.fyre.ibm.com: /root
lsof /mqha/qmgrs/QMMI1/master
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
amqzxma0 30939 mqm 18uW REG 0,48 4096 134548712 /mqha/qmgrs/QMMI1/master
List the locks for the 'active' file.
Under the column FD notice the value of rR:
 rR => which means that the file is opened with read access mode, and with read lock on
entire file

ROOT@host1-riggioni1.fyre.ibm.com: /root
lsof /mqha/qmgrs/QMMI1/active
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
amqzxma0 30939 mqm 19rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
amqzfuma 35020 mqm 9rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
amqzmuc0 35027 mqm 10rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
amqzmuc0 35027 mqm 11rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
amqzmuc0 35027 mqm 16rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
amqzmuf0 35073 mqm 6rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
amqrrmfa 35077 mqm 6rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
amqzlaa0 35088 mqm 6rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
amqfqpub 35132 mqm 6rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
java 35148 mqm 93rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active
amqfcxba 35162 mqm 6rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active

Notice that the Execution Controller (EC) for the queue manager is called "amqzxma0":
amqzxma0 30939 mqm 19rR REG 0,48 4096 134548713 /mqha/qmgrs/QMMI1/active

You can use the following to find out the command and arguments for the EC:
mqm@host1: /mqha/qmgrs/QMMI1/
$ ps -ef | grep 35010
mqm 30939 1 0 04:00 ? 00:00:00 /opt/mqm/bin/amqzxma0 -m QMMI1 -x -u mqm

Page 21 of 34

Show the contents of the "active" file. Notice the 1st argument, which is the host name.
cat /mqha/qmgrs/QMMI1/active
riggioni1.fyre.ibm.com,7225330354288567839,1682278317,501,501

List the locks for the 'standby' file.
There are no locks on this file from host1.

lsof /mqha/qmgrs/QMMI1/standby
(none)

Page 22 of 34

+ Step 3: Start the Standby instance:

Status at start of this step:
host1: Active
host2: No instance running
master file locked by: host1
active file locked by: host1
standby file locked by: none

We need to review now the traces from host2

In the same way that we identified the trace files for the EC and the dspmq for the Active
in host1, the corresponding files for the Standby in host2 were identified and renamed:

AMQ118435.0.EC.amqzxma0.host2.FMT => it is the Execution Controller for host2 (Step 3)
AMQ118462.0.dspmq.1.host2.FMT => it is the first dspmq from host2 (Step 4)
AMQ118608.0.dspmq.2.host2.FMT => it is the second dspmq from host2 (Step 7)

Reviewing trace for EC:
File: AMQ118435.0.EC.amqzxma0.host2.FMT

Search for: zutRequestQMFileLocks

 12:21:07.419064 118435.1 : --{ zutRequestQMFileLocks
 12:21:07.419076 118435.1 : DataPath(/mqha/qmgrs/QMMI1) Flags(0X41)

Check if master file is available by trying to get a lock

 12:21:07.419205 118435.1 : ---{ xcsOpenFileLock
 12:21:07.419212 118435.1 : FileName(/mqha/qmgrs/QMMI1/master)
LockMode(0X1)
 12:21:07.421631 118435.1 : ----{ xcsWaitFileLock
 12:21:07.421690 118435.1 : fd(13) LockType(0X1) timeout(0)
 12:21:07.423225 118435.1 : Data: 0x0000000b 0x00000001 0x00000000
0x00000001
 12:21:07.423265 118435.1 : Lock not granted
 12:21:07.423275 118435.1 : ----}! xcsWaitFileLock
rc=xecN_E_LOCK_NOT_GRANTED FunctionTime=1644
 12:21:07.423284 118435.1 : Data: 0x0000000d 0x00000000
 12:21:07.423868 118435.1 : fd(-1)
 12:21:07.423898 118435.1 : ---}! xcsOpenFileLock
rc=xecN_E_LOCK_NOT_GRANTED FunctionTime=4693
 12:21:07.423907 118435.1 : --}! zutRequestQMFileLocks
rc=lpiRC_Q_MGR_LOCK_UNAVAILABLE FunctionTime=4843

Page 23 of 34

Notice that the lock was not granted, thus, this means that the Active instance is already
running and has locked the file!
Now the queue manager will try to grab the standby file

 12:21:07.423917 118435.1 : --{ zutRequestQMFileLocks
 12:21:07.423925 118435.1 : DataPath(/mqha/qmgrs/QMMI1) Flags(0X1200)
 12:21:07.423935 118435.1 : ---{ xcsOpenFileLock
 12:21:07.423942 118435.1 : FileName(/mqha/qmgrs/QMMI1/standby)
LockMode(0)
 12:21:07.424949 118435.1 : fd(13)
 12:21:07.424974 118435.1 : ---} xcsOpenFileLock rc=OK FunctionTime=1039
 12:21:07.424991 118435.1 : ---{ xcsCloseFileLock
 12:21:07.425017 118435.1 : Data: 0x0000000d 0x00000000
 12:21:07.425494 118435.1 : ---} xcsCloseFileLock rc=OK FunctionTime=503
 12:21:07.425509 118435.1 : --} zutRequestQMFileLocks rc=OK
FunctionTime=1592

The queue manager was able to get the standby file.

 12:21:07.425574 118435.1 : ---{ xcsOpenFileLock
 12:21:07.425579 118435.1 : FileName(/mqha/qmgrs/QMMI1/standby)
LockMode(0X1)
 12:21:07.426491 118435.1 : ----{ xcsWaitFileLock
 12:21:07.426512 118435.1 : fd(13) LockType(0X1) timeout(0)
 12:21:07.427487 118435.1 : ----} xcsWaitFileLock rc=OK FunctionTime=996
 12:21:07.427514 118435.1 : fd(13)
 12:21:07.427519 118435.1 : ---} xcsOpenFileLock rc=OK FunctionTime=1945
 12:21:07.427525 118435.1 : Lock details to write into standby:
suvereto1.fyre.ibm.com,7225327562557880603,1682277667,501,501
 12:21:07.427535 118435.1 : ---{ xcsWriteFileLock
 12:21:07.427540 118435.1 :
LockData(suvereto1.fyre.ibm.com,7225327562557880603,1682277667,501,501)
 12:21:07.442873 118435.1 : ---} xcsWriteFileLock rc=OK FunctionTime=15338

Even though it is not related to file locking, the Standby instance needs to verify if
qmstatus.ini indicates that a Standby is permitted. If yes (Active used "strmqm -x"), then
continue.
If not, then stop (that is, the Active did not specify the -x in strmqm).
 PermitStandby=Yes

12:21:55.458118 118435.1 : -----{ xusWriteSingleStanza
 12:21:55.458124 118435.1 : QueueManagerStatus:
 12:21:55.458129 118435.1 : CurrentStatus=Starting
 12:21:55.458133 118435.1 : PermitStandby=Yes
 12:21:55.458137 118435.1 : PermitFailover=Yes
 12:21:55.458141 118435.1 : PlatformSignature=20497

Page 24 of 34

 12:21:55.458146 118435.1 : PlatformString=Linux 4.18.0-
425.19.2.el8_7.x86_64
 12:21:55.458155 118435.1 : UpdateTime=2023-04-23 12:21:55.457815
 12:21:55.458159 118435.1 : Version=9.3.2.0
 12:21:55.458163 118435.1 : MinimumRequiredVersion=9.3.2.0
 12:21:55.458167 118435.1 : RetCode (OK)

The queue manager starts in Standby mode

mqm@host2: /var/mqm/trace
$ dspmq -xf -m QMMI1
QMNAME(QMMI1) STATUS(Running as standby)
 INSTANCE(riggioni1.fyre.ibm.com) MODE(Active)
 INSTANCE(suvereto1.fyre.ibm.com) MODE(Standby)
 master(riggioni1.fyre.ibm.com,7225327309153730329)
 active(riggioni1.fyre.ibm.com,7225327309153730329)
 standby(suvereto1.fyre.ibm.com,7225327562557880603)

Notice that there are only 4 processes running:

mqm@host2: /var/mqm/trace
$ ps -ef | grep -i mq
mqm 23158 1 0 12:35 ? 00:00:00 /opt/mqm93/bin/amqzxma0 -m QMMI1 -x -u
mqm
mqm 122429 23158 0 12:35 ? 00:00:00 /opt/mqm93/bin/amqzfuma -m QMMI1
mqm 122433 23158 0 12:35 ? 00:00:00 /opt/mqm93/bin/amqzmgr0 -m QMMI1
mqm 122436 23158 0 12:35 ? 00:00:00 /opt/mqm93/bin/amqzmuc0 -m QMMI1

Let's look at the status of the locks:

ROOT@host2: /root
lsof /mqha/qmgrs/QMMI1/master
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
amqzxma0 23158 mqm 18u REG 0,48 4096 134548712 /mqha/qmgrs/QMMI1/master

ROOT@host2: /root
lsof /mqha/qmgrs/QMMI1/active
Note from author: no output

There will be a lock on the file "standby"
The value for FD includes rW and uW:
rW means - read access, write lock on entire file
uW means - read and write access, write lock on entire file

Page 25 of 34

ROOT@host2: /root
lsof /mqha/qmgrs/QMMI1/standby
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
amqzxma0 23158 mqm 10uW REG 0,48 4096 134551303
/mqha/qmgrs/QMMI1/standby

The contents of the standby file is:

cat /mqha/qmgrs/QMMI1/standby
suvereto1.fyre.ibm.com,7225331161741564019,1682278505,501,501

+ Notice new entry in the error log:

directory: /mqha/qmgrs/QMMI1/errors
File: AMQERR01.LOG

Notice that this is an explicit indication that the Standby instance was started, and the Host
name is mentioned in the header:

04/23/2023 12:21:07 PM - Process(118435.1) User(mqm) Program(amqzxma0)
 Host(suvereto1.fyre.ibm.com) Installation(Installation2)
 VRMF(9.3.2.0) QMgr(QMMI1)
 Time(2023-04-23T19:21:07.495Z)
 CommentInsert3(QMMI1)
AMQ8060I: IBM MQ queue manager 'QMMI1' started as a standby instance.
EXPLANATION:
Queue manager 'QMMI1' started as a standby instance, ready to become the active
instance if the existing active instance fails.

Page 26 of 34

+ Step 4: Steady state - dspmq from host2 and review of file locks

Status at start of this step:
host1: Active
host2: Standby
master file locked by: host1
 Lock data for /mqha/qmgrs/QMMI1/master is <riggioni1> <LOCKED>
active file locked by: host1
 Lock data for /mqha/qmgrs/QMMI1/active is <riggioni1> <LOCKED>
standby file locked by: host2
 Lock data for /mqha/qmgrs/QMMI1/standby is <suvereto1> <LOCKED>

Let's review the trace for the dspmq command that shows that the Active is in host1 and
the Standby is in host2:

File: AMQ118462.0.dspmq.1.host2.FMT

Notice that the 3 files are locked:

 12:21:32.543584 118462.1 : --{ xcsQueryFileLock
 12:21:32.543588 118462.1 : FileName(/mqha/qmgrs/QMMI1/master)
 12:21:32.546478 118462.1 : Lock data read ()
 12:21:32.546523 118462.1 : Data: 0x00000008 0x00000000
 12:21:32.546541 118462.1 : --} xcsQueryFileLock rc=OK FunctionTime=2957
 12:21:32.546567 118462.1 : Lock data for /mqha/qmgrs/QMMI1/master
is <riggioni1.fyre.ibm.com> <LOCKED>
 12:21:32.546572 118462.1 : -} zutQueryQMFileLocks rc=OK FunctionTime=3205

 12:21:32.546589 118462.1 : --{ xcsQueryFileLock
 12:21:32.546594 118462.1 : FileName(/mqha/qmgrs/QMMI1/active)
 12:21:32.549462 118462.1 : Lock data read ()
 12:21:32.549527 118462.1 : Data: 0x00000008 0x00000000
 12:21:32.553535 118462.1 : --} xcsQueryFileLock rc=OK FunctionTime=6946
 12:21:32.553596 118462.1 : Lock data for /mqha/qmgrs/QMMI1/active is
<riggioni1.fyre.ibm.com> <LOCKED>
 12:21:32.553601 118462.1 : -} zutQueryQMFileLocks rc=OK FunctionTime=7023

12:21:32.553620 118462.1 : --{ xcsQueryFileLock
 12:21:32.553625 118462.1 : FileName(/mqha/qmgrs/QMMI1/standby)
 12:21:32.555011 118462.1 : Lock data read ()
 12:21:32.555044 118462.1 : Data: 0x00000008 0x00000000
 12:21:32.555072 118462.1 : --} xcsQueryFileLock rc=OK FunctionTime=1452
 12:21:32.555084 118462.1 : Lock data for /mqha/qmgrs/QMMI1/standby
is <suvereto1.fyre.ibm.com> <LOCKED>
 12:21:32.555088 118462.1 : -} zutQueryQMFileLocks rc=OK FunctionTime=1480

Page 27 of 34

+ Note about the monitoring threads

The names of the monitoring threads are:
zxcFileLockVerifyThread
zxcStartFileLockMonitorThread

At this time, these monitoring threads did not have an active role because the "endmqm -is"
command was used, which did a graceful switchover.
But if there was a problem with the responsiveness/availability of the network/filesystem,
then these monitoring threads may force a failover (generating FDCs).

host1:
In the trace for the Active instance, here is the information about the monitoring threads:

 12:20:10.579062 30939.15 : -{ zxcFileLockVerifyThread
..
 12:20:10.569644 30939.1 : ---{ zxcStartFileLockMonitorThread

 12:20:10.579125 30939.1 : ---} zxcStartFileLockMonitorThread rc=OK
FunctionTime=139

Host2:
Notice that the Standby EC is checking the file lock for "master" every 2 seconds:

 12:21:07.419205 118435.1 : ---{ xcsOpenFileLock
 12:21:07.419212 118435.1 : FileName(/mqha/qmgrs/QMMI1/master)
LockMode(0X1)
 12:21:07.421631 118435.1 : ----{ xcsWaitFileLock
 12:21:07.421690 118435.1 : fd(13) LockType(0X1) timeout(0)
 12:21:07.423225 118435.1 : Data: 0x0000000b 0x00000001 0x00000000
0x00000001
 12:21:07.423265 118435.1 : Lock not granted
 12:21:07.423275 118435.1 : ----}! xcsWaitFileLock
rc=xecN_E_LOCK_NOT_GRANTED FunctionTime=1644
12:21:07.423898 118435.1 : ---}! xcsOpenFileLock
rc=xecN_E_LOCK_NOT_GRANTED FunctionTime=4693
 12:21:07.423907 118435.1 : --}! zutRequestQMFileLocks
rc=lpiRC_Q_MGR_LOCK_UNAVAILABLE FunctionTime=4843
…
 12:23:28.547288 118435.1 : ---}! xcsOpenFileLock
rc=xecN_E_LOCK_NOT_GRANTED FunctionTime=1411
 12:23:28.547295 118435.1 : --}! zutRequestQMFileLocks
rc=lpiRC_Q_MGR_LOCK_UNAVAILABLE FunctionTime=1444

Page 28 of 34

+ Step 5-a: Do a graceful end for the Active (which will cause the switchover to
Standby)

Status at start of this step:
host1: Active
host2: Standby
master file locked by: host1
active file locked by: host1
standby file locked by: host2

Now let's look again at the traces from host1 when the Active is terminating when using the
command:
 endmqm -is QMMI1

The flag -is means:
 -i => immediate
 -s => notify reconnectable clients to reconnect.

File: AMQ30939.0.EC.amqzxma0.host1.FMT

Note:
The traces do NOT show the explicit unlocking of the files.

During the ending process, the Active queue manager checks that the standby file is locked
(which means that there is a standby) and then proceeds to notify the reconnectable clients
to reconnect:

 12:21:53.852339 30939.16 : --{ rrxNotifyReconnectableClients
 12:21:53.852348 30939.16 : ---{ rppConnectPool
…
 12:21:55.359398 30939.1 : --{ zutReleaseQMFileLocks
 12:21:55.359402 30939.1 : Flags(0X21)
 12:21:55.359405 30939.1 : ---{ xcsCloseFileLock
 12:21:55.360284 30939.1 : Data: 0x0000000e 0x00000000
 12:21:55.360968 30939.1 : ---} xcsCloseFileLock rc=OK FunctionTime=1563
 12:21:55.360980 30939.1 : ---{ xcsCloseFileLock
 12:21:55.361311 30939.1 : Data: 0x0000000d 0x00000000
 12:21:55.361785 30939.1 : ---} xcsCloseFileLock rc=OK FunctionTime=805
 12:21:55.361797 30939.1 : --} zutReleaseQMFileLocks rc=OK
FunctionTime=2399

Page 29 of 34

At this point, the Active instance has released the locks, and the master/active files are
ready to be locked by the Standby.

directory: /mqha/qmgrs/QMMI1/errors
File: AMQERR01.LOG

The error logs now indicate that the previously active instance in host1 (riggioni1) is now
ended:

04/23/2023 12:21:55 PM - Process(30939.1) User(mqm) Program(amqzxma0)
 Host(riggioni1.fyre.ibm.com) Installation(Installation1)
 VRMF(9.3.2.0) QMgr(QMMI1)
 Time(2023-04-23T19:21:55.050Z)
 CommentInsert3(QMMI1)
AMQ8004I: IBM MQ queue manager 'QMMI1' ended.
EXPLANATION:
IBM MQ queue manager 'QMMI1' ended.

Page 30 of 34

+ Step 5-b: Because the Standby is querying every 2 seconds to see if it can get the
master lock, then it very quickly gets it:

Status at start of this step:
host1: no instance running
host2: Standby
master file locked by: none
active file locked by: none
standby file locked by: host2

The following is from the trace of the EC from host2:
AMQ118435.0.EC.amqzxma0.host2.FMT

The Active instance has unlocked the master file, and now the Standby queries for the file
and the file has no longer exclusive locks and the Standby gets the locks (becoming an
Active instance)

The Standby got the lock for the file and now writes its data into the file:

12:21:47.518024 118435.1 : ThreadEventName: hevtEC, ThreadEventId: 1
*12:21:55.362991 118435.14 : ----} xcsWaitFileLock rc=OK
FunctionTime=8093123
 12:21:55.363068 118435.14 : fd(21)
 12:21:55.363073 118435.14 : ---} xcsOpenFileLock rc=OK
FunctionTime=8093105
 12:21:55.363081 118435.14 : Lock details to write into master:
suvereto1.fyre.ibm.com,7225327562557880603,1682277667,501,501
 12:21:55.363086 118435.14 : ---{ xcsWriteFileLock
 12:21:55.363090 118435.14 :
LockData(suvereto1.fyre.ibm.com,7225327562557880603,1682277667,501,501)
 12:21:55.375698 118435.14 : ---} xcsWriteFileLock rc=OK FunctionTime=12612

It does the same with the active file:

12:21:55.375772 118435.14 : ---{ xcsOpenFileLock
 12:21:55.375791 118435.14 : FileName(/mqha/qmgrs/QMMI1/active)
LockMode(0X1)
 12:21:55.377441 118435.14 : ----{ xcsWaitFileLock
 12:21:55.377477 118435.14 : fd(22) LockType(0X1) timeout(-1)
 12:21:55.378063 118435.14 : ----} xcsWaitFileLock rc=OK FunctionTime=622
 12:21:55.378079 118435.14 : fd(22)
 12:21:55.378083 118435.14 : ---} xcsOpenFileLock rc=OK FunctionTime=2311
 12:21:55.378090 118435.14 : Lock details to write into active:
suvereto1.fyre.ibm.com,7225327562557880603,1682277667,501,501
 12:21:55.378094 118435.14 : ---{ xcsWriteFileLock

Page 31 of 34

 12:21:55.378099 118435.14 :
LockData(suvereto1.fyre.ibm.com,7225327562557880603,1682277667,501,501)
 12:21:55.391067 118435.14 : ---} xcsWriteFileLock rc=OK FunctionTime=12973

Then releases the lock for the standby file

 12:21:55.391136 118435.14 : ---{ xcsCloseFileLock
 12:21:55.391761 118435.14 : Data: 0x00000016 0x00000000
 12:21:55.392183 118435.14 : ---} xcsCloseFileLock rc=OK FunctionTime=1047

Page 32 of 34

+ Step 6: Status after switchover

Now the Standby instance in host2 has become the Active instance.

Status at start of this step:
host1: no instance running
host2: Active
master file locked by: host2
active file locked by: host2
standby file locked by: none

Display the status of the queue managers after the switchover has completed

 Host2: dspmq -xf -m QMMI1
QMNAME(QMMI1) STATUS(Running elsewhere)
 INSTANCE(suvereto1.fyre.ibm.com) MODE(Active)
 master(suvereto1.fyre.ibm.com,7225327562557880603)
 active(suvereto1.fyre.ibm.com,7225327562557880603)

Trace file:
AMQ31123.0.dspmq.2.host1.FMT

 12:22:24.824996 31123.1 : ---{ xcsQueryFileLock
 12:22:24.824998 31123.1 : FileName(/mqha/qmgrs/QMMI1/master)
 12:22:24.826601 31123.1 : Lock data read ()
 12:22:24.826616 31123.1 : Data: 0x00000008 0x00000000
 12:22:24.826857 31123.1 : ---} xcsQueryFileLock rc=OK FunctionTime=1861
 12:22:24.826883 31123.1 : Lock data for /mqha/qmgrs/QMMI1/master is
<suvereto1.fyre.ibm.com> <LOCKED>
…
 12:22:24.826899 31123.1 : ---{ xcsQueryFileLock
 12:22:24.826902 31123.1 : FileName(/mqha/qmgrs/QMMI1/standby)
 12:22:24.828171 31123.1 : Lock data read ()
 12:22:24.828186 31123.1 : Data: 0x00000008 0x00000000
 12:22:24.828456 31123.1 : ---} xcsQueryFileLock rc=OK FunctionTime=1557
 12:22:24.828468 31123.1 : Lock data for /mqha/qmgrs/QMMI1/standby is
<suvereto1.fyre.ibm.com> <NOT LOCKED>
 12:22:24.828471 31123.1 : --} zutQueryQMFileLocks rc=OK FunctionTime=1577

Page 33 of 34

Let's look at the error log for the message that indicates that the standby from host2
Host(suvereto1) is now the Active

04/23/2023 12:21:55 PM - Process(118435.1) User(mqm) Program(amqzxma0)
 Host(suvereto1.fyre.ibm.com) Installation(Installation2)
 VRMF(9.3.2.0) QMgr(QMMI1)
 Time(2023-04-23T19:21:55.401Z)
 CommentInsert3(QMMI1)
AMQ8352I: IBM MQ queue manager 'QMMI1' becoming the active instance.
EXPLANATION:
The standby instance of queue manager instance 'QMMI1' is becoming the active
instance.

Page 34 of 34

+ Step 7: Display the status of the queue managers after the switchover has completed

 host1: dspmq -xf -m QMMI1
mqm@host1: /var/mqm/trace
$ dspmq -xf -m QMMI1
QMNAME(QMMI1) STATUS(Running)
 INSTANCE(suvereto1.fyre.ibm.com) MODE(Active)
 master(suvereto1.fyre.ibm.com,7225327562557880603)
 active(suvereto1.fyre.ibm.com,7225327562557880603)

 host2: dspmq -xf -m QMMI1
mqm@host2: /var/mqm/trace
$ dspmq -xf -m QMMI1
QMNAME(QMMI1) STATUS(Running)
 INSTANCE(suvereto1.fyre.ibm.com) MODE(Active)
 master(suvereto1.fyre.ibm.com,7225327562557880603)
 active(suvereto1.fyre.ibm.com,7225327562557880603)

Trace file:
AMQ118608.0.dspmq.2.host2.FMT

 12:22:48.431553 118608.1 : --{ xcsQueryFileLock
 12:22:48.431559 118608.1 : FileName(/mqha/qmgrs/QMMI1/master)
 12:22:48.434609 118608.1 : Lock data read ()
 12:22:48.434659 118608.1 : Data: 0x00000008 0x00000000
 12:22:48.434683 118608.1 : --} xcsQueryFileLock rc=OK FunctionTime=3130
 12:22:48.434708 118608.1 : Lock data for /mqha/qmgrs/QMMI1/master
is <suvereto1.fyre.ibm.com> <LOCKED>

12:22:48.434734 118608.1 : --{ xcsQueryFileLock
 12:22:48.434737 118608.1 : FileName(/mqha/qmgrs/QMMI1/active)
 12:22:48.435835 118608.1 : Lock data read ()
 12:22:48.435863 118608.1 : Data: 0x00000008 0x00000000
 12:22:48.436296 118608.1 : --} xcsQueryFileLock rc=OK FunctionTime=1562
 12:22:48.436325 118608.1 : Lock data for /mqha/qmgrs/QMMI1/active is
<suvereto1.fyre.ibm.com> <LOCKED>

 12:22:48.436347 118608.1 : --{ xcsQueryFileLock
 12:22:48.436351 118608.1 : FileName(/mqha/qmgrs/QMMI1/standby)
 12:22:48.437756 118608.1 : Lock data read ()
 12:22:48.437779 118608.1 : Data: 0x00000008 0x00000000
 12:22:48.438443 118608.1 : --} xcsQueryFileLock rc=OK FunctionTime=2096
 12:22:48.438464 118608.1 : Lock data for /mqha/qmgrs/QMMI1/standby
is <suvereto1.fyre.ibm.com> <NOT LOCKED>

+++ end +++

